Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
2.
CEN Case Rep ; 9(4): 380-384, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32533415

RESUMO

Dent's disease is a rare X-linked condition caused by a mutation in CLCN5 and OCRL gene, which impair the megalin-cubilin receptor-mediated endocytosis in kidney's proximal tubules. Thus, it may manifest as nephrotic-range low-molecular-weight proteinuria (LMWP). On the other hand, glomerular proteinuria, hypoalbuminemia, and edema formation are the key features of nephrotic syndrome that rarely found in Dent's disease. Here, we reported a man in his 30 s with Dent's disease presented with leg edema for 5 days. The laboratory results revealed hypoalbuminemia and a decrease of urine ß2-microglobulin/urine protein ratio (Uß2-MG /UP), indicating that the primary origin of proteinuria shifted from LMWP to glomerular proteins. The kidney biopsy revealed glomerular abnormality and calcium deposition in the renal medulla. Electron microscopy of the kidney tissue indicated extensive foot-process effacement of the glomerular podocytes and degeneration of tubular epithelium. After a combination of treatment with prednisolone and cyclosporine (CyA), the nephrotic syndrome was remitted. Given the atypical clinical presentation and the shift of LMWP to glomerular proteinuria in this patient, glomerulopathy and the Dent's disease existed separately in this patient.


Assuntos
Doença de Dent/diagnóstico , Glomérulos Renais/ultraestrutura , Túbulos Renais Proximais/metabolismo , Síndrome Nefrótica/diagnóstico , Adulto , Biópsia , Calcinose/diagnóstico , Ciclosporina/uso terapêutico , Doença de Dent/complicações , Doença de Dent/etiologia , Doença de Dent/genética , Quimioterapia Combinada , Glucocorticoides/uso terapêutico , Humanos , Hipoalbuminemia/etiologia , Imunossupressores/uso terapêutico , Rim/patologia , Glomérulos Renais/anormalidades , Glomérulos Renais/patologia , Túbulos Renais Proximais/patologia , Masculino , Microscopia Eletrônica/métodos , Síndrome Nefrótica/sangue , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/urina , Prednisolona/uso terapêutico , Proteinúria/diagnóstico , Proteinúria/etiologia , Resultado do Tratamento
3.
J Am Soc Nephrol ; 30(9): 1641-1658, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31405951

RESUMO

BACKGROUND: GATA3 is a dual-zinc finger transcription factor that regulates gene expression in many developing tissues. In the kidney, GATA3 is essential for ureteric bud branching, and mice without it fail to develop kidneys. In humans, autosomal dominant GATA3 mutations can cause renal aplasia as part of the hypoparathyroidism, renal dysplasia, deafness (HDR) syndrome that includes mesangioproliferative GN. This suggests that GATA3 may have a previously unrecognized role in glomerular development or injury. METHODS: To determine GATA3's role in glomerular development or injury, we assessed GATA3 expression in developing and mature kidneys from Gata3 heterozygous (+/-) knockout mice, as well as injured human and rodent kidneys. RESULTS: We show that GATA3 is expressed by FOXD1 lineage stromal progenitor cells, and a subset of these cells mature into mesangial cells (MCs) that continue to express GATA3 in adult kidneys. In mice, we uncover that GATA3 is essential for normal glomerular development, and mice with haploinsufficiency of Gata3 have too few MC precursors and glomerular abnormalities. Expression of GATA3 is maintained in MCs of adult kidneys and is markedly increased in rodent models of mesangioproliferative GN and in IgA nephropathy, suggesting that GATA3 plays a critical role in the maintenance of glomerular homeostasis. CONCLUSIONS: These results provide new insights on the role GATA3 plays in MC development and response to injury. It also shows that GATA3 may be a novel and robust nuclear marker for identifying MCs in tissue sections.


Assuntos
Fator de Transcrição GATA3/metabolismo , Glomerulonefrite/metabolismo , Glomérulos Renais/metabolismo , Animais , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Feminino , Fatores de Transcrição Forkhead/metabolismo , Fator de Transcrição GATA3/genética , Haploinsuficiência , Humanos , Glomérulos Renais/anormalidades , Glomérulos Renais/embriologia , Glomérulos Renais/patologia , Masculino , Células Mesangiais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cultura Primária de Células , Ratos , Ratos Wistar
4.
Clin Exp Nephrol ; 23(4): 537-543, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30353264

RESUMO

BACKGROUND: We recently demonstrated that preterm neonates have higher urinary angiotensinogen (AGT) levels than full-term neonates. Here, we tested the hypothesis that enhanced neonatal AGT expression is associated with intrarenal renin-angiotensin system (RAS) status during kidney development. METHODS: We prospectively recruited neonates born at our hospital and healthy children with minor glomerular abnormalities between April 2013 and March 2017. We measured neonatal plasma and urinary AGT levels at birth and 1 year later and assessed renal AGT expression in kidney tissues from neonates and healthy children using immunohistochemical (IHC) analysis. RESULTS: Fifty-four neonates and eight children were enrolled. Although there were no changes in plasma AGT levels, urinary AGT levels were significantly decreased 1 year after birth. Urinary AGT levels at birth were inversely correlated with gestational age, and urinary AGT levels at birth and 1 year later were inversely correlated with estimated glomerular filtration rate 1 year after birth. IHC analysis showed that renal AGT expression in neonates was higher than that in healthy children and inversely correlated with gestational age. CONCLUSIONS: Enhanced AGT expression and urinary AGT excretion may reflect intrarenal RAS activation associated with kidney development in utero.


Assuntos
Angiotensinogênio/sangue , Angiotensinogênio/urina , Rim/crescimento & desenvolvimento , Angiotensinogênio/metabolismo , Biópsia , Criança , Pré-Escolar , Creatinina/urina , Feminino , Idade Gestacional , Taxa de Filtração Glomerular , Humanos , Imuno-Histoquímica , Lactente , Recém-Nascido , Rim/patologia , Rim/fisiologia , Glomérulos Renais/anormalidades , Masculino , Parto , Estudos Prospectivos
5.
Autoimmun Rev ; 17(9): 890-899, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30009962

RESUMO

Lupus nephritis (LN) is one of the most frequent and severe manifestations of systemic lupus erythematosus (SLE), considered as the major predictor of poor prognosis. An early diagnosis of LN is a real challenge in the management of SLE and has an important implication in guiding treatments. In clinical practice, conventional parameters still lack sensitivity and specificity for detecting ongoing disease activity in lupus kidneys and early relapse of nephritis. LN is characterized by glomerular kidney injury, essentially due to deposition of immune complexes involving autoantibodies against cellular components and circulating proteins. One of the possible mechanisms of induction of autoantibodies in SLE is a defect in apoptotic cells clearance and subsequent release of intracellular autoantigens. Autoantibodies against soluble protective molecules involved in the uptake of dying cells, including complement proteins and pentraxins, have been described. In this review, we present the main autoantibodies found in LN, with a focus on the antibodies against these protective molecules. We also discuss their pathogenic role and conclude with their potential interest as serological biomarkers in LN.


Assuntos
Biomarcadores/sangue , Glomérulos Renais/anormalidades , Rim/patologia , Lúpus Eritematoso Sistêmico/genética , Nefrite Lúpica/imunologia , Feminino , Humanos , Lúpus Eritematoso Sistêmico/patologia , Masculino
6.
Nephron ; 138(4): 310-323, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29342457

RESUMO

BACKGROUND: von Hippel-Lindau (VHL) disease is characterized by the development of benign and malignant tumours in many organ systems, including renal cysts and clear cell renal cell carcinoma. It is not completely understood what underlies the development of renal pathology, and the use of murine Vhl models has been challenging due to limitations in disease conservation. We previously described a zebrafish model bearing inactivating mutations in the orthologue of the human VHL gene. METHODS: We used histopathological and functional assays to investigate the pronephric and glomerular developmental defects in vhl mutant zebrafish, supported by human cell culture assays. RESULTS: Here, we report that vhl is required to maintain pronephric tubule and glomerulus integrity in zebrafish embryos. vhl mutant glomeruli are enlarged, cxcr4a+ capillary loops are dilated and the Bowman space is widened. While we did not observe pronephric cysts, the cells of the proximal convoluted and anterior proximal straight tubule are enlarged, periodic acid schiff (PAS) and Oil Red O positive, and display a clear cytoplasm after hematoxylin and eosine staining. Ultrastructural analysis showed the vhl-/- tubule to accumulate large numbers of vesicles of variable size and electron density. Microinjection of the endocytic fluorescent marker AM1-43 in zebrafish embryos revealed an accumulation of endocytic vesicles in the vhl mutant pronephric tubule, which we can recapitulate in human cells lacking VHL. CONCLUSIONS: Our data indicates that vhl is required to maintain pronephric tubule and glomerulus integrity during zebrafish development, and suggests a role for VHL in endocytic vesicle trafficking.


Assuntos
Glomérulos Renais/metabolismo , Túbulos Renais Proximais/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Animais , Desenvolvimento Embrionário/genética , Glomérulos Renais/anormalidades , Glomérulos Renais/crescimento & desenvolvimento , Túbulos Renais Proximais/anormalidades , Túbulos Renais Proximais/crescimento & desenvolvimento , Larva , Mutação , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
7.
J Am Soc Nephrol ; 29(4): 1128-1140, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29335243

RESUMO

A critical aspect of kidney function occurs at the glomerulus, the capillary network that filters the blood. The glomerular basement membrane (GBM) is a key component of filtration, yet our understanding of GBM interactions with mesangial cells, specialized pericytes that provide structural stability to glomeruli, is limited. We investigated the role of nephronectin (Npnt), a GBM component and known ligand of α8ß1 integrin. Immunolocalization and in situ hybridization studies in kidneys of adult mice revealed that nephronectin is produced by podocytes and deposited into the GBM. Conditional deletion of Npnt from nephron progenitors caused a pronounced increase in mesangial cell number and mesangial sclerosis. Nephronectin colocalized with α8ß1 integrin to novel, specialized adhesion structures that occurred at sites of mesangial cell protrusion at the base of the capillary loops. Absence of nephronectin disrupted these adhesion structures, leading to mislocalization of α8ß1. Podocyte-specific deletion of Npnt also led to mesangial sclerosis in mice. These results demonstrate a novel role for nephronectin and α8ß1 integrin in a newly described adhesion complex and begin to uncover the molecular interactions between the GBM and mesangial cells, which govern mesangial cell behavior and may have a role in pathologic states.


Assuntos
Proteínas da Matriz Extracelular/fisiologia , Membrana Basal Glomerular/fisiologia , Mesângio Glomerular/citologia , Pericitos/citologia , Podócitos/metabolismo , Animais , Adesão Celular/fisiologia , Contagem de Células , Células Epiteliais/metabolismo , Proteínas da Matriz Extracelular/biossíntese , Proteínas da Matriz Extracelular/deficiência , Feminino , Adesões Focais , Deleção de Genes , Mesângio Glomerular/anormalidades , Integrinas/metabolismo , Glomérulos Renais/anormalidades , Masculino , Camundongos , Camundongos Mutantes , Especificidade de Órgãos , Pericitos/metabolismo
8.
BMC Dev Biol ; 16(1): 30, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27582005

RESUMO

BACKGROUND: Wnt11 is a member of the Wnt family of secreted signals controlling the early steps in ureteric bud (UB) branching. Due to the reported lethality of Wnt11 knockout embryos in utero, its role in later mammalian kidney organogenesis remains open. The presence of Wnt11 in the emerging tubular system suggests that it may have certain roles later in the development of the epithelial ductal system. RESULTS: The Wnt11 knockout allele was backcrossed with the C57Bl6 strain for several generations to address possible differences in penetrance of the kidney phenotypes. Strikingly, around one third of the null mice with this inbred background survived to the postnatal stages. Many of them also reached adulthood, but urine and plasma analyses pointed out to compromised kidney function. Consistent with these data the tubules of the C57Bl6 Wnt11 (-/-) mice appeared to be enlarged, and the optical projection tomography indicated changes in tubular convolution. Moreover, the C57Bl6 Wnt11 (-/-) mice developed secondary glomerular cysts not observed in the controls. The failure of Wnt11 signaling reduced the expression of several genes implicated in kidney development, such as Wnt9b, Six2, Foxd1 and Hox10. Also Dvl2, an important PCP pathway component, was downregulated by more than 90 % due to Wnt11 deficiency in both the E16.5 and NB kidneys. Since all these genes take part in the control of UB, nephron and stromal progenitor cell differentiation, their disrupted expression may contribute to the observed anomalies in the kidney tubular system caused by Wnt11 deficiency. CONCLUSIONS: The Wnt11 signal has roles at the later stages of kidney development, namely in coordinating the development of the tubular system. The C57Bl6 Wnt11 (-/-) mouse generated here provides a model for studying the mechanisms behind tubular anomalies and glomerular cyst formation.


Assuntos
Glomérulos Renais/anormalidades , Túbulos Renais/anormalidades , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Animais , Diferenciação Celular , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Glomérulos Renais/embriologia , Túbulos Renais/embriologia , Camundongos , Camundongos Knockout , Transdução de Sinais
10.
Kidney Blood Press Res ; 36(1): 162-71, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23095255

RESUMO

BACKGROUND: Higher blood pressure and albuminuria are found in offspring of mothers who smoke during pregnancy. Whether or not kidney development is affected by maternal smoking is unknown. METHODS: Sprague-Dawley rats were randomly allocated to twice-daily cigarette smoke and nicotine condensate (1 mg/kg) or vehicle at day 10 of pregnancy until delivery. RESULTS: Exposed offspring did not differ from control offspring with respect to body weight, kidney weight, albuminuria, and creatinine clearance. Both male and female offspring had higher tail-plethysmographic blood pressures and lower mean glomerular volume, podocyte, mesangial-cell, and endothelial-cell number, compared to control offspring. CONCLUSIONS: The data document that prenatal exposure to cigarette-smoke condensate containing nicotine influences normal kidney development and could predispose to higher blood pressures later in life.


Assuntos
Animais Recém-Nascidos , Glomérulos Renais/anormalidades , Nicotina/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Fumar/efeitos adversos , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Contagem de Células , Feminino , Glomérulos Renais/patologia , Glomérulos Renais/fisiopatologia , Masculino , Modelos Animais , Nicotina/farmacologia , Tamanho do Órgão , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos , Ratos Sprague-Dawley
11.
PLoS One ; 7(8): e42814, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22880115

RESUMO

BACKGROUND: The CXCL12/CXCR4 axis is involved in kidney development by regulating formation of the glomerular tuft. Recently, a second CXCL12 receptor was identified and designated CXCR7. Although it is established that CXCR7 regulates heart and brain development in conjunction with CXCL12 and CXCR4, little is known about the influence of CXCR7 on CXCL12 dependent kidney development. METHODOLOGY/PRINCIPAL FINDINGS: We provided analysis of CXCR7 expression and function in the developing mouse kidney. Using in situ hybridization, we identified CXCR7 mRNA in epithelial cells including podocytes at all nephron stages up to the mature glomerulus. CXCL12 mRNA showed a striking overlap with CXCR7 mRNA in epithelial structures. In addition, CXCL12 was detected in stromal cells and the glomerular tuft. Expression of CXCR4 was complementary to that of CXCR7 as it occurred in mesenchymal cells, outgrowing ureteric buds and glomerular endothelial cells but not in podocytes. Kidney examination in CXCR7 null mice revealed ballooning of glomerular capillaries as described earlier for CXCR4 null mice. Moreover, we detected a severe reduction of CXCR4 protein but not CXCR4 mRNA within the glomerular tuft and in the condensed mesenchyme. Malformation of the glomerular tuft in CXCR7 null mice was associated with mesangial cell clumping. CONCLUSIONS/SIGNIFICANCE: We established that there is a similar glomerular pathology in CXCR7 and CXCR4 null embryos. Based on the phenotype and the anatomical organization of the CXCL12/CXCR4/CXCR7 system in the forming glomerulus, we propose that CXCR7 fine-tunes CXCL12/CXCR4 mediated signalling between podocytes and glomerular capillaries.


Assuntos
Capilares/embriologia , Capilares/metabolismo , Rim/irrigação sanguínea , Rim/metabolismo , Receptores CXCR4/metabolismo , Receptores CXCR/metabolismo , Animais , Capilares/patologia , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Epitélio/embriologia , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Rim/embriologia , Rim/patologia , Glomérulos Renais/anormalidades , Glomérulos Renais/irrigação sanguínea , Glomérulos Renais/embriologia , Glomérulos Renais/ultraestrutura , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Néfrons/embriologia , Néfrons/metabolismo , Organogênese/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CXCR/deficiência , Receptores CXCR/genética , Receptores CXCR4/genética , Ureter/embriologia , Ureter/metabolismo
12.
Pediatr Nephrol ; 27(10): 1881-7, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22532329

RESUMO

A low nephron number is, according to Brenner's hyperfiltration hypothesis, associated with hypertension, glomerular damage and proteinuria, and starts a vicious cycle that ends in renal failure over the long term. Nephron endowment is set during foetal life, and there is no formation of nephrons after 34-36 weeks of gestation, indicating that many factors before that time-point may have an impact on kidney development and reduce nephron numbers. Such factors include maternal malnutrition, stress, diseases, such as diabetes, uteroplacental insufficiency, maternal and neonatal drugs and premature birth. However, other congenital anomalies, such as renal hypoplasia, unilateral renal agenesis or multicystic dysplastic kidney, may also lead to a reduced nephron endowment, with an increased risk for hypertension, renal dysfunction and the need for renal replacement therapy. This review focuses on the causes and consequences of a low nephron endowment and will illustrate why there is safety in glomerular numbers.


Assuntos
Hipertensão/etiologia , Nefropatias/etiologia , Glomérulos Renais/patologia , Animais , Taxa de Filtração Glomerular , Humanos , Hipertensão/patologia , Hipertensão/fisiopatologia , Nefropatias/patologia , Nefropatias/fisiopatologia , Glomérulos Renais/anormalidades , Glomérulos Renais/embriologia , Glomérulos Renais/fisiopatologia , Organogênese , Proteinúria/etiologia , Proteinúria/patologia , Medição de Risco , Fatores de Risco
13.
J Am Soc Nephrol ; 22(11): 2037-46, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21949092

RESUMO

Unbiased transcriptome profiling and functional genomics approaches identified glucocorticoid-induced transcript 1 (GLCCI1) as being a transcript highly specific for the glomerulus, but its role in glomerular development and disease is unknown. Here, we report that mouse glomeruli express far greater amounts of Glcci1 protein compared with the rest of the kidney. RT-PCR and Western blotting demonstrated that mouse glomerular Glcci1 is approximately 60 kD and localizes to the cytoplasm of podocytes in mature glomeruli. In the fetal kidney, intense Glcci1 expression occurs at the capillary-loop stage of glomerular development. Using gene knockdown in zebrafish with morpholinos, morphants lacking Glcci1 function had collapsed glomeruli with foot-process effacement. Permeability studies of the glomerular filtration barrier in these zebrafish morphants demonstrated a disruption of the selective glomerular permeability filter. Taken together, these data suggest that Glcci1 promotes the normal development and maintenance of podocyte structure and function.


Assuntos
Glomérulos Renais/fisiopatologia , Podócitos/fisiologia , Pronefro/fisiopatologia , Proteinúria/metabolismo , Proteinúria/fisiopatologia , Receptores de Glucocorticoides/deficiência , Animais , Citoplasma/metabolismo , Dexametasona/farmacologia , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Glucocorticoides/farmacologia , Glomérulos Renais/anormalidades , Masculino , Camundongos , Camundongos Endogâmicos ICR , Oligonucleotídeos Antissenso/farmacologia , Pronefro/anormalidades , Proteinúria/patologia , Coelhos , Receptores de Glucocorticoides/genética , Peixe-Zebra , Proteínas de Peixe-Zebra
14.
Kidney Int ; 80(10): 1055-63, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21849970

RESUMO

Mutations in the MYH9 gene, coding for the non-muscle myosin heavy chain IIA (NMHC-IIA), are responsible for syndromes characterized by macrothrombocytopenia associated with deafness, cataracts, and severe glomerular disease. Electron microscopy of renal biopsies from these patients found glomerular abnormalities characterized by alterations in mesangial cells, podocytes, and thickening of the glomerular basement membrane. Knockout of NMHC-IIA in mice is lethal, and therefore little is known about the glomerular-related functions of Myh9. Here, we use zebrafish as a model to study the role and function of zNMHC-IIA in the glomerulus. Knockdown of zNMHC-IIA resulted in malformation of the glomerular capillary tuft characterized by few and dilated capillaries of the pronephros. In zNMHC-IIA morphants, endothelial cells failed to develop fenestrations, mesangial cells were absent or reduced, and the glomerular basement membrane appeared nonuniformly thickened. Knockdown of zNMHC-IIA did not impair the formation of podocyte foot processes or slit diaphragms; however, podocyte processes were less uniform in these morphants compared to controls. In vivo clearance of fluorescent dextran indicated that the glomerular barrier function was not compromised by zNMHC-IIA knockdown; however, glomerular filtration was significantly reduced. Thus, our results demonstrate an important role of zNMHC-IIA for the proper formation and function of the glomerulus in zebrafish.


Assuntos
Glomérulos Renais/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Plaquetas/metabolismo , Dextranos/metabolismo , Edema/genética , Edema/metabolismo , Células Endoteliais/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Corantes Fluorescentes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Genótipo , Membrana Basal Glomerular/metabolismo , Taxa de Filtração Glomerular , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Glomérulos Renais/anormalidades , Glomérulos Renais/irrigação sanguínea , Glomérulos Renais/efeitos dos fármacos , Larva/genética , Larva/metabolismo , Miosina não Muscular Tipo IIA/antagonistas & inibidores , Miosina não Muscular Tipo IIA/genética , Permeabilidade , Fenótipo , Podócitos/metabolismo , Proteínas Recombinantes/metabolismo , Fatores de Tempo , Peixe-Zebra/anormalidades , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
15.
J Am Soc Nephrol ; 22(7): 1365-74, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21636639

RESUMO

Nephrogenesis is ongoing at the time of birth for the majority of preterm infants, but whether postnatal renal development follows a similar trajectory to normal in utero growth is unknown. Here, we examined tissue collected at autopsy from 28 kidneys from preterm neonates, whose postnatal survival ranged from 2 to 68 days, including 6 that had restricted intrauterine growth. In addition, we examined kidneys from 32 still-born gestational controls. We assessed the width of the nephrogenic zone, number of glomerular generations, cross-sectional area of the renal corpuscle, and glomerular maturity and morphology. Renal maturation accelerated after preterm birth, with an increased number of glomerular generations and a decreased width of the nephrogenic zone in the kidneys of preterm neonates. Of particular concern, compared with gestational controls, preterm kidneys had a greater percentage of morphologically abnormal glomeruli and a significantly larger cross-sectional area of the renal corpuscle, suggestive of renal hyperfiltration. These observations suggest that the preterm kidney may have fewer functional nephrons, thereby increasing vulnerability to impaired renal function in both the early postnatal period and later in life.


Assuntos
Recém-Nascido Prematuro/crescimento & desenvolvimento , Glomérulos Renais/crescimento & desenvolvimento , Causas de Morte , Idade Gestacional , Humanos , Recém-Nascido , Glomérulos Renais/anormalidades , Masculino , Nascimento Prematuro/tratamento farmacológico , Nascimento Prematuro/mortalidade
16.
Am J Physiol Renal Physiol ; 298(6): F1384-92, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20335316

RESUMO

The extent to which a reduced nephron endowment contributes to hypertension and renal disease is confounded in models created by intrauterine insults that also demonstrate other phenotypes. Furthermore, recent data suggest that a reduced nephron endowment provides the "first hit" and simply increases the susceptibility to injurious stimuli. Thus we examined nephron number, glomerular volume, conscious mean arterial pressure (MAP), and renal function in a genetic model of reduced nephron endowment before and after a high-salt (5%) diet. One-yr-old glial cell line-derived neurotrophic factor wild-type (WT) mice, heterozygous (HET) mice born with two kidneys (HET2K), and HET mice born with one kidney (HET1K) were used. Nephron number was 25% lower in HET2K and 65% lower in HET1K than WT mice. Glomeruli hypertrophied in both HET groups by 33%, resulting in total glomerular volumes that were similar between HET2K and WT mice but remained 50% lower in HET1K mice. On a normal-salt diet, 24-h MAP was not different between WT, HET2K, and HET1K mice (102 +/- 1, 103 +/- 1, and 102 +/- 2 mmHg). On a high-salt diet, MAP increased 9.1 +/- 1.9 mmHg in HET1K mice (P < 0.05) and 5.4 +/- 0.9 mmHg in HET2K mice (P < 0.05) and did not change significantly in WT mice. Creatinine clearance was 60% higher in WT mice but 30% lower in HET2K and HET1K mice fed a high-salt diet than in controls maintained on a normal-salt diet. Thus a reduction in nephron number (or total glomerular volume) alone does not lead to hypertension or kidney disease in aged mice, but exposure to high salt uncovers a hypertensive and renal phenotype.


Assuntos
Pressão Sanguínea , Hipertensão/etiologia , Nefropatias/etiologia , Néfrons/fisiopatologia , Cloreto de Sódio na Dieta/efeitos adversos , Animais , Pressão Sanguínea/genética , Ritmo Circadiano , Creatinina/sangue , Modelos Animais de Doenças , Feminino , Genótipo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Taxa de Filtração Glomerular , Heterozigoto , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/patologia , Hipertensão/fisiopatologia , Hipertrofia , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Nefropatias/fisiopatologia , Testes de Função Renal , Glomérulos Renais/anormalidades , Glomérulos Renais/metabolismo , Glomérulos Renais/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Néfrons/anormalidades , Néfrons/metabolismo , Concentração Osmolar , Fenótipo , Renina/sangue , Sódio/sangue , Micção
17.
Anat Rec (Hoboken) ; 293(2): 280-90, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19937638

RESUMO

Renal hypoplasia results from an insufficient kidney volume caused, in part, by a deficient number of glomeruli. The purpose of this study was to apply tessellation analysis to determine whether glomerular point patterns differed between adult normal (WT) and mutant (Br) mice with heritable renal hypoplasia and to delineate a spatial distribution accounting for the observed patterns. Kidneys from adult WT and Br mice were collected, processed with routine light histology and representative transverse sections were photographed. Cortical area and perimeter were calculated from traced tissue contours and glomeruli were identified and digitized. Voronoi tessellations were constructed and average parameters for Voronoi polygon number, area, perimeter and edge counts as well as spatial metrics comprising nearest neighbor and centroidal distances were calculated and compared. Point distributions were simulated by randomizing glomerular coordinates from each section and plotting the new points utilizing uniform random, Gaussian random, or isotropic functions. Average nearest neighbor distances were generated for each specimen and ranked with respect to corresponding values generated from 1,000 iterations for each simulated set. Results showed that WT and Br were significantly different for each parameter suggesting that WT kidneys possessed more glomeruli, but these were less clustered compared to Br. Simulations suggested that WT and Br demonstrated similar, but not identical, underlying glomerular spatial distributions. Defective gene expression in Br is important for determining glomerular number and the defective pattern likely results from a heterochronic disturbance consisting of a truncated growth trajectory during embryonic kidney development.


Assuntos
Nefropatias/patologia , Glomérulos Renais/anormalidades , Animais , Modelos Animais de Doenças , Predisposição Genética para Doença , Proteínas de Homeodomínio/genética , Nefropatias/genética , Camundongos , Camundongos Endogâmicos C3H , Camundongos Mutantes , Modelos Biológicos , Modelos Estatísticos , Mutação , Distribuição Normal , Linhagem , Fenótipo , Reprodutibilidade dos Testes , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
18.
Arch Histol Cytol ; 73(3): 113-25, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22572179

RESUMO

Renal biopsy paraffin sections were examined by low vacuum scanning electron microscopy (LVSEM) in the backscattered electron (BSE) mode, a novel method for rapid pathological analysis which allowed detailed and efficient three-dimensional observations of glomeruli. Renal samples that had been already diagnosed by light microscopy (LM) as exhibiting IgA nephropathy, minor glomerular abnormalities, and membranous glomerulonephritis (GN) were rapidly processed in the present study. Unstained paraffin sections of biopsy samples on glass slides were deparaffinized, stained with platinum blue (Pt-blue) or periodic acid silver-methenamine (PAM), and directly observed with a LVSEM. Overviews of whole sections and detailed observations of individual glomeruli were immediately performed at arbitrary magnifications between ×50 to ×18,000. Cut surface views and surface views of glomeruli were demonstrated at the same time. On Pt-blue-stained sections, podocytes, endothelia, mesangium, and glomerular basement membranes (GBMs) could be distinguished due to the different yields of BSE signals, and pathological features were investigated in every sample. The abnormal surface appearances of podocytes with foot processes and the varying thicknesses of GBM were revealed three-dimensionally, features difficult to observe under LM and transmission electron microscopy. PAM-positive GBM alterations in membranous GN were distinctly visualized through overlying cells without cell removal under LVSEM at high magnification. Not only prominent spike formation but also slight protrusions were clearly revealed in the side views of GBM. Crater-like or hole-like structures were shown in the en face views of GBM. Accordingly, LVSEM is expected to provide a novel approach to the pathological diagnosis of human glomerular diseases using conventional renal biopsy sections.


Assuntos
Imageamento Tridimensional/métodos , Rim/patologia , Rim/ultraestrutura , Microscopia Eletrônica de Varredura/métodos , Vácuo , Biópsia , Glomerulonefrite por IGA/patologia , Glomerulonefrite Membranosa/patologia , Humanos , Glomérulos Renais/anormalidades , Glomérulos Renais/patologia , Glomérulos Renais/ultraestrutura , Coloração e Rotulagem , Fatores de Tempo
19.
Biochem Biophys Res Commun ; 384(2): 173-9, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19401193

RESUMO

Patients with diabetes are under a hypercoagulable state leading to generation of thrombin. It is not known whether thrombin plays a role in the progression of diabetic nephropathy. We analyzed gene expression of two thrombin receptors, protease-activated receptor-1 (PAR-1) and PAR-4 in the kidney of diabetic db/db mice. Mice developed hyperglycemia from 7 to 10 weeks of age and showed renal abnormalities such as mesangial expansion and urinary albumin excretion at 10 weeks of age. PAR-1 mRNA was up-regulated in isolated glomeruli in db/db mice compared with age-matched db/m littermates, but PAR-4 mRNA was not. In situ hybridization studies showed that PAR-1 mRNA was detected mainly at the glomerulus, and that intensive signals were observed in mesangial cells and podocytes. The up-regulation of PAR-1 in glomeruli in diabetic mice may play a role in the progression of glomerulosclerosis and abnormal urinary albumin excretion in diabetic nephropathy.


Assuntos
Nefropatias Diabéticas/metabolismo , Glomérulos Renais/metabolismo , Receptor PAR-1/metabolismo , Animais , Diabetes Mellitus/metabolismo , Glomérulos Renais/anormalidades , Camundongos , Camundongos Endogâmicos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptor PAR-1/genética , Receptores de Trombina/biossíntese , Receptores de Trombina/genética , Regulação para Cima
20.
Am J Physiol Renal Physiol ; 296(5): F1166-78, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19193724

RESUMO

The Br/+ mutant mouse displays decreased embryological expression of the homeobox transcription factor Six2, resulting in hertitable renal hypoplasia. The purpose of this study was to characterize the renal physiological consequences of embryonic haploinsuffiency of Six2 by analyzing renal morphology and function in the adult Br heterozygous mutant. Adult Br/+ kidneys weighed 50% less than those from wild-type mice and displayed glomerulopathy. Stereological analysis of renal glomeruli showed that Br/+ kidneys had an average of 88% fewer glomeruli than +/+ kidneys, whereas individual glomeruli in Br/+ mice maintained an average volume increase of 180% compared with normal nephrons. Immunostaining revealed increased levels of endothelin-1 (ET-1), endothelin receptors A (ET(A)) and B (ET(B)), and Na-K-ATPase were present in the dilated renal tubules of mutant mice. Physiological features of chronic renal failure (CRF) including elevated mean arterial pressure, increased plasma creatinine, and dilute urine excretion were measured in Br/+ mutant mice. Electron microscopy of the Br/+ glomeruli revealed pathological alterations such as hypercellularity, extracellular matrix accumulation, and a thick irregular glomerular basement membrane. These results indicate that adult Br/+ mice suffer from CRF associated with reduced nephron number and renal hypoplasia, as well as glomerulopathy. Defects are associated with embryological deficiencies of Six2, suggesting that proper levels of this protein during nephrogenesis are critical for normal glomerular development and adult renal function.


Assuntos
Proteínas de Homeodomínio/genética , Hipertensão Renal/fisiopatologia , Falência Renal Crônica/fisiopatologia , Néfrons/anormalidades , Néfrons/fisiologia , Fatores de Transcrição/genética , Animais , Regulação para Baixo/fisiologia , Endotelina-1/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipertensão Renal/genética , Hipertensão Renal/patologia , Falência Renal Crônica/genética , Falência Renal Crônica/patologia , Glomérulos Renais/anormalidades , Glomérulos Renais/fisiologia , Glomérulos Renais/ultraestrutura , Túbulos Renais/anormalidades , Túbulos Renais/fisiologia , Túbulos Renais/ultraestrutura , Camundongos , Camundongos Endogâmicos C3H , Camundongos Mutantes , Microscopia Eletrônica , Néfrons/ultraestrutura , Receptores de Endotelina/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...